segunda-feira, 28 de maio de 2012

Regra de três composta

Só Matemática

Regra de três composta
A regra de três composta é utilizada em problemas com mais de duas grandezas, direta ou inversamente proporcionais.
        Exemplos:
        1) Em 8 horas, 20 caminhões descarregam 160m3 de areia. Em 5 horas, quantos caminhões serão necessários para descarregar 125m3?
        Solução: montando a tabela, colocando em cada coluna as grandezas de mesma espécie e, em cada linha, as grandezas de espécies diferentes que se correspondem:
Horas Caminhões Volume
8 20 160
5 x 125
        Identificação dos tipos de relação:
        Inicialmente colocamos uma seta para baixo na coluna que contém o x (2ª coluna).
regra3_9.gif (1192 bytes)
        A seguir, devemos comparar cada grandeza com aquela onde está o x.
        Observe que:
        Aumentando o número de horas de trabalho, podemos diminuir o número de caminhões. Portanto a relação é inversamente proporcional (seta para cima na 1ª coluna).
        Aumentando o volume de areia, devemos aumentar o número de caminhões. Portanto a relação é diretamente proporcional (seta para baixo na 3ª coluna). Devemos igualar a razão que contém o termo x com o produto das outras razões de acordo com o sentido das setas.
Montando a proporção e resolvendo a equação temos:
regra3_10.gif (1291 bytes) regra3_11.gif (2147 bytes)
Logo, serão necessários 25 caminhões.

        2) Numa fábrica de brinquedos, 8 homens montam 20 carrinhos em 5 dias. Quantos carrinhos serão montados por 4 homens em 16 dias?
        Solução: montando a tabela:
Homens Carrinhos Dias
8 20 5
4 x 16
        Observe que:         Aumentando o número de homens, a produção de carrinhos aumenta. Portanto a relação é diretamente proporcional (não precisamos inverter a razão).
        Aumentando o número de dias, a produção de carrinhos aumenta. Portanto a relação também é diretamente proporcional (não precisamos inverter a razão). Devemos igualar a razão que contém o termo x com o produto das outras razões.
Montando a proporção e resolvendo a equação temos:
regra3_12.gif (1320 bytes)
Logo, serão montados 32 carrinhos.

        3) Dois pedreiros levam 9 dias para construir um muro com 2m de altura. Trabalhando 3 pedreiros e aumentando a altura para 4m, qual será o tempo necessário para completar esse muro?
        Inicialmente colocamos uma seta para baixo na coluna que contém o x. Depois colocam-se flechas concordantes para as grandezas diretamente proporcionais com a incógnita e discordantes para as inversamente proporcionais, como mostra a figura abaixo:
regra3_13.gif (1894 bytes)
Montando a proporção e resolvendo a equação temos:
regra3_14.gif (2375 bytes)
Logo, para completar o muro serão necessários 12 dias.

    Exercícios complementares
    Agora chegou a sua vez de tentar. Pratique tentando fazer esses exercícios:
    1) Três torneiras enchem uma piscina em 10 horas. Quantas horas levarão 10 torneiras para encher 2 piscinas?  Resposta: 6 horas.
    2) Uma equipe composta de 15 homens extrai, em 30 dias, 3,6 toneladas de carvão. Se for aumentada para 20 homens, em quantos dias conseguirão extrair 5,6 toneladas de carvão?   Resposta: 35 dias.
    3) Vinte operários, trabalhando 8 horas por dia, gastam 18 dias para construir um muro de 300m. Quanto tempo levará uma turma de 16 operários, trabalhando 9 horas por dia, para construir um muro de 225m?  Resposta: 15 dias.
    4) Um caminhoneiro entrega uma carga em um mês, viajando 8 horas por dia, a uma velocidade média de 50 km/h. Quantas horas por dia ele deveria viajar para entregar essa carga em 20 dias, a uma velocidade média de 60 km/h?  Resposta: 10 horas por dia.
    5) Com uma certa quantidade de fio, uma fábrica produz 5400m de tecido com 90cm de largura em 50 minutos. Quantos metros de tecido, com 1 metro e 20 centímetros de largura, seriam produzidos em 25 minutos?  Resposta: 2025 metros.
 http://www.somatematica.com.br/fundam/regra3c.php

Nenhum comentário:

Postar um comentário